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Summary: Most commonly, kinetics model reduction techniques are based on exploiting time scale 
separation into fast and slow reaction processes. Then, a researcher approximates the system 
dynamically with dimension reduction for slow ones eliminating the fast modes. The main idea 
behind the construction of the lower dimension manifold is based on finding its initial 
approximation using Quasi Equilibrium Manifold (QEM). Here, we provide an efficient numerical 
method, which allow us to calculate low dimensional manifolds of chemical reaction systems. This 
computation technique is not restricted to our specific complex problem, but it can also be applied to 
other reacting flows or dynamic systems provided with the condition that a large number of extra 
(decaying) components can be eliminated from the system.  
Through computational approach, we approximate low dimensional manifold for a mechanism of six chemical 
species to simplify complex chemical kinetics. A reduced descriptive form of slow invariant manifold is obtained 
from dissipative system. This method is applicable for higher dimensions and is applied over an oxidation of 
CO/Pt. 

 
Keyword: chemical kinetics, model reduction, entropy, invariant manifolds, variation problem, Lagrange 
multipliers method. 
 
Introduction 
 

The field of chemical kinetics is full of 
challenges and interesting activities involving 
complexity which is not only involved in chemistry 
but also in other areas of science, i.e., mathematics 
and physics. 
 

In order to construct a lower dimensional 
manifold, many modern model reduction techniques 
make use of the Multiple Time Scales Method. By 
considering the behavior of the system for a long 
time, fast transient dynamical models are assumed to 
be relaxed within the slowly reduced model 
approximations [1]. In this way the original system of 
differential equations is reduced to lower dimensions 
without losing the general applicability of the system 
[2], [3]. 
 

It is necessary to find a reduction system 
that does not affect system's accuracy and explain the 
whole mechanism of the system. 
 

The computational singular perturbation 
method, developed by Lam (1986) and Gossips 
(1989), determines the result similar to the analytical 
singular perturbation method and it is popular for 
stiff systems. 
 

The most common modern model reduction 
techniques include lumping, sensitivity and time 
scale analysis.  
 

In a time scale analysis, the computational 
singular perturbation (CSP) and intrinsic low-
dimensional manifolds (ILDM) [4], [5], [6] are very 
common while the quasi equilibrium (QE) and quasi-
steady-state assumption (QSSA) [7] also demands the 
knowledge of the involved materials. 
 

The classical Quasi Steady State 
Approximation proposed by Bodenstein (1913- [8]), 
basically depends on the relative pettiness of 
concentrations of some of the active reagents like 
(radicals, substrate-enzyme complexes) [9], [10], 
[11]. 
 

Lumping analysis combine the reagents into 
quasi-components for dimension reduction [12], [13], 
[14], [15]. 
 

It is possible to construct QEM analytically 
with the help of Lagrange multipliers, but the idea 
fails or becomes more complicated for a larger 
dimensional QEM. 
 

Here, we consider a general method of 
constructing the reduced descriptive form of 
dissipative systems of reaction kinetics. This idea 
belongs to late 80s and early 90s [16], [17], [18]. The 
new idea of Quasi Equilibrium Grid (QEG) 
construction will be considered as a discrete analog 
of QEM in order to avoid all the difficulties faced in 
large dimension stiff problem. The constructive 
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algorithm is applicable for any dimension and it is 
implemented on an example of a complex chemical 
reaction. Accuracy of this method can be easily 
observed/confirmed and it is possible to get some 
other SIM approximations as well depending on same 
algorithms. 
 
Paper Organized 
 

This paper is organized as follows: we start 
our work by a formal description of some 
background and chemical representation uses 
throughout the paper within a section 2. The role of 
thermodynamics is explained in section 2.2 as 
equilibrium is defined by thermodynamics. The main 
idea of the slow invariant manifold and invariance 
equation is described in section 2.3 which basically 
gives invariant grids i.e. positively invariant 
manifolds for dissipative systems. Iterative method 
for the construction of invariant grid is discussed in 
section 3.3. 
 

In this section, the main idea of constructing 
one dimension quasi-equilibrium grid algorithm is 
presented. This is then implemented on an example 
of oxidation of carbon monoxide over platinum and a 
one dimensional manifold is obtained in section 4. 
The idea is extended for higher dimensions by using 
a straightforward extension and a two dimensional 
manifold will be obtained in section 4.1. Finally, in 
section 5, the paper is concluded. 
 
Background 
 
Chemical Kinetics Representation 
 

For a basic notation of the chemical kinetics 
and its formalism consider a list of finite set of 
components along with symbols: 1, , nA A… . 
 

A reaction mechanism, defined by a finite 
set of elementary reactions, provides a set of 
stoichiometric equations. 

 

,
n n

i i i i
i i

A Aρ ρα β→∑ ∑    (1) 

 
,i iρ ρα β , are stoichiometric coefficients (nonnegative 

integers) and 1, , mρ = …  gives the reaction 
number.  n -dimensional stoichiometric vector ργ  of 
the reaction (1) is 
 

,i i iρ ρ ργ β α= −     (2) 

 Roughly speaking it is, 'gain 
minus loss' in the thρ  reaction. 
 

The reaction rate, , ( ),r or Wρ ρ
which 

corresponds to each reaction, (1) is a non-negative 
extensive quantity given by mass action law 
 

( , ) ( ) ,i
i

i

r c T k T c ρα
ρ ρ= ∏    (3) 

 
As a function of concentration c  and 

temperature. Whereas ( )k Tρ
 is a reaction rate 

constant. 
 

As an intensive variable 
/i ic N V= ( 0V > Volume), the vector / V=c N  is a 

vector of concentration while 
i iN A∈  is an extensive 

variable. The kinetic equations for a system (without 
external flux) will become: 

 
,d V r or

dt ρ ρ
ρ

γ= ∑N    

.
( ), ( ) ( ).VJ c J c W cρ ρ

ρ

γ= = ∑N   (4) 

 
When a system (4) moves towards 

equilibrium, the relation between the quantities is 
defined by the principle of detail balance i.e, 
 

( ) ( ), 1... .eq eqW c W c mρ ρ ρ+ −= =   (5) 
 

( )eqc T   is the equilibrium. For isolated or 
isothermal conditions, we get an extra equation in the 
form of ,U V  or T C nt=  (i.e, constant). Finally, 
the above system (4) will take a form 

 
( ) ( ).c W c J cρ ρ

ρ

γ= =∑&    (6) 

 
Similarly, other constraints (linear) i.e. 

conservation of atoms are taken into account as well. 
 

 .D c C n t=     (7) 
 

Once, if we become able to define 
thermodynamic structure of the system then, we will 
be able to transform our system into a dissipative 
system. 
 
Thermodynamics Potential and Thermodynamics 
Projector  
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Due to the dissipative property of our 
system, it has a thermodynamic potential, i.e. 
Lyapunov function G, which has an important role 
for the stability and convergence of the system and it 
follows the second law of thermodynamics.  This 
means the Lyapunov function decreases 
monotonically until it reaches global minimum eqc  of 
the phase space. It is also possible to get a number of 
positively closed invariant sets in a dissipative 
system. 
 

An ideal case under the constant volume and 
at a constant temperature of perfect free gas energy is 
given by [2] 
 

1

[ ( / ) 1].
n

eq
i i i

i

G c ln c c
=

= −∑    (8) 

 
knowing the G function, we are able to find 

its gradient G∇  and also its second derivatives 
matrix H  such as: 
 

2| ( / ) |, | / | .eq
i i i jG ln c c H G c c∇ = = ∂ ∂ ∂  (9) 

 
Use thermodynamic scalar product ,〈 〉as 

follows 
 

, ( , ) ,x y x H y〈 〉 =     (10) 
 
where ( , ) implies Euclidean scalar product. 
 

An operator (thermodynamic projector) 
projects the vector field at each point of the manifold 
into the tangent space to give the induced vector field 

( ) ,P J c  defines the "slow and fast motions" duality 
[19]. In this way, a projector depends on two things, 
tangent space of the manifold Ω  and concentration 
point c . Now the differential of a linear functionalG , 
and induced vector field are: 

( ) ( ( ) , ) .D G x G c x= ∇  
 

( ) 0 , .D G P J c≤ ∀ ∈ Ω   (11) 
 
where the projector P  considers the above condition 
if and only if: 
 

( ) ( ) ,k e r P k e r D G⊂ ∀ ∈ Ωc  (12) 
 
 ker is the null space of an operator. 
 

After finding a reduced description form, 
our SIM will become a q(let us suppose) dimensional 
SIM. It plays an important role for the construction of 

method of invariant grids (MIG). Let us consider g as 
a discrete subset of q dimension parametric space. If 
we are able to find such an approximation in order to 
restore a smooth map F  from the discrete map F g‖  
then the derivatives /i if F y= ∂ ∂  at each grid point is 
available, and the tangent space will become: 
 

yT ( ), 1 ...iL in f i n= =    (13) 
 

Further, if y g∈  acquires equilibrium, 
while for other points ( ) ( ) ( ) 0D G F y x ≠  for 
some yx T∈ . Now the thermodynamic projector can 
be defined [2] for any subspace ( ),oy yT T ker DG= ∩  

where ( ),oy yT T ker DG= ∩  by introducing a new 
vector with certain conditions. 
 

,y ye T∈  
 

, 0, ,y oye x x T〈 〉 = ∀ ∈   (14) 
 

( ) 1.yDG e =    
 

If oP  is orthogonal projector on oyT  w.r.t 
entropic scalar product (10), then vector projection 
(thermodynamic) of xis defined as: 

 
( )oy y x ox yT T P P e DG x≠ ⇒ + +  

 
oy y x oxT T P P= ⇒ +     (15) 

 
Invariant Manifold and Invariance Condition 
 

In order to avoid the complexity of systems, 
we normally move towards the reduce description. 
 

Although, there is no specific definition for 
invariant manifold (positive), the behaviour of the 
immersed manifold along the trajectories in a phase 
space will be measured.  In this way, we shall obtain 
a new equation for the dynamics of the manifold in 
phase space. Invariant manifolds are the fixed points 
for this extended dynamics and slow invariant 
manifold are the Lyapunov stable fixed points. 
 

The invariance condition for reduce 
decrypted manifold Ω  is 
 
[1 ] ( ) 0 ,P J c t c− = ∀ ≥   (16) 
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P is the projector over any tangent bundle of 
the manifoldΩ . If this condition of invariance is not 
satisfied by the manifold, then it is not invariant 
manifold. 
 
Slow Invariant Manifold 
 

Several methods are available to measure 
the slow invariant manifold. Here, we consider a 
'Newton method with incomplete linearization', an 
efficient method for the invariance equation. For 
detail of this method, we refer to (Chapter Six [19]). 
It is a basis of an iterative construction of the 
manifolds of slow motions [20]. 
 

The best initial approximation for this 
method is quasi-equilibrium manifold. Since it 
naturally obeys the conditional maxima of the 
entropy and it is also widely used in non-equilibrium 
thermodynamics i.e. dealing with (or without) the 
corrections to quasi equilibrium approximation. 
 
Quasi Equilibrium Manifold  
 

Quasi equilibrium approximation basically 
deals with two entities: entropy Sand the slow 
variables M .  Entropy is a Lyapunov function 
(concave) depending on equilibrium data and it does 
not depend directly on kinetic coefficients and 
increase in time. Due to this property, it is called 
universal. [21]. 
 

0dS
dt

≥ ,    (17) 

 
Slow variables are the differentiable 

functions of variables ( ):  x M m x= . 
 

Selecting slow variables means believing on 
hypothesis about separation of motion into slow and 
fast motion depending on two assumptions, i.e. the 
assumption of small fast-slow projection and slave 
assumption [21]. 
 

According to QE approximation, we obtain 
functions *

Mx  as solutions of the MaxEnt optimization 
problem. 
 

( ) m a x w .r . t ( ) .S x m x M→ =  (18) 
 

The rationale behind this approach is simple: 
during the fast motion entropy S increases 
while Malmost remains unchanged. 
 

Therefore, it's natural to assume that *
Mx  is 

close to the solution of the MaxEnt optimization 
problem (18). Also, *

Mx represents a solution to the 
MaxEnt problem. 
 

Being more precise and considering the 
concentration vectors l , which satisfy the atomic 
balance constraints defined by the equation (7). 
Within the space l , we are interested only in those 
points which minimize the Lyapunov function. The 
manifold we obtained is called as Quasi Equilibrium 
Manifold, In an n − dimensional chemical species if 
l  is atomic balance constraint then we are left with 
n l−  degrees of freedom. If ( )q n l< −  is the 
dimension of the QEM, then we are left with the 
reduced descripted variables of 1... qξ ξ , mentioned as: 
 

1 1( , ) , , ( , ) ,q qm c m cξ ξ= … =  
 (19) 

 
whereas, imare n-dimensional vectors. Now, the 
solution of the variation problem G min→ , under 
consideration of constraints (6) which represent the 
QEM and it must respect the following conditions: 
 

1

[ ( / ) 1]   
n

eq
i i i

i

G c ln c c min
=

= − →∑
 

 
( , )  m ξ=c  
 

1 2( , ) .TDc cnt cnt=     (20) 
 
Spectral Quasi Equilibrium Manifold  
 

By choosing different vector sets im  we 
obtained different QEM. If the choice of selecting the 
vectors im  is done from the q left eigenvectors sl

ix  of 
the Jacobian matrix ( )eqL c  corresponding to small 
absolute eigen values. Then we are dealing with a 
Spectral Quasi Equilibrium manifold (SQEM) [2], 
[22]. 
 

This new procedure is better than the 
Lagrange multiplier because it can deal with the 
higher dimensional problem (i.e. number of species), 
where Lagrange method usually fails or becomes 
more complicated to be handled. An algorithm 
developed by Quasi Equilibrium Grid (QEG) easily 
implements a discrete analogue set of QEM in a 1D 
and can be further extended to higher dimensions. 
 
Construction of Quasi equilibrium Grids  
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Let us now discuss a one dimensional quasi-

equilibrium manifold with an assumption that node 
pc  lies on the manifold and we are interested to find 

the next one 1pc +  which also lies on it. This can be 

done by adding a shift vector 1:p p p pc c c c+ = +h h  
as shown in Fig. 1 a, 
 

The procedure of selecting a new QEM-
node 1pc +  is applicable till each QEM-node pc  is 
calculated and it satisfies the condition (7). 
 

A convenient way is to describe the process 
by [23] that takes the conditions (7) automatically 
into account to express any shift pch  as a linear 
combination of vectors iυ  

 
z

p i i
i

c υ ρ= ∑h
    (21) 

 
where, iρ are the basis in a null space of matrix D  
having a dimension z n l= −  . Now the tangent space 
T at any QEM-node 1pc +  lies on a surface G  is a 
linear constraint for the system. Although many 
points c  satisfy these constants but we are interested 
only in those which minimize the G  function. 
 

The line l  passing from 1pc +  and c  has 

parametric form 1pc t cφ += + , where t is a vector of 

T  spanning land φ  is a parameter. 
 

Now the linear constraints for (20) can be 
written as 
 

1 1 1 1 1( , ) ( , ) ( , ) ( , ) 0 , i
pm c m t m c m t t Tφ += + ⇒ = ∀ ∈  

 
1( , ) ( , ) ( , ) ( , ) 0 , i

q q q p qm c m t m c m t t Tφ += + ⇒ = ∀ ∈  
 

1( , ) ( , ) ( , ) ( , ) 0, i
i i i p id c d t d c d t t Tφ += + ⇒ = ∀ ∈

(22) 
 
In matrix form it can be represented as: 

 

E

D

 
 
 =
 
 
 

1

q

m

m
M

 

   (23) 

 
Here, 1m is the first reduced variable vector 

( 1)q =  and for a higher dimension we have 

,..., .1 qm m  Then, the dimension of basis jt  in 

( )k e r E  will be ( )z q− . 
 

As we are interested in all the points 1pc +  of 

T  which minimize the G  function (by definition 
QEM). This can be calculated by taking the 
orthogonal condition. 
 

1( ( ), ) 0, , 1,..., 1p jG c t t T j z+∇ = ∀ ∈ = −    
(24) 

 
In spite of above equation, the QEG 

algorithm based on two more assumptions [23] that is 
known node nc  is close to the QEM, although it is not 
necessary that it belongs to QEM. 
 

Secondly, the shift vector pch  is also close 

enough so that the gradient 1( )pG c +∇  can be 
approximated to the first order. 
 

1( ) ( ) ( ) ,p p p pG c G c H c c+∇ = ∇ + h  (25) 
 
where 2

( ) [ ]p
i j

GH c
c c
∂

=
∂ ∂

denotes the matrix of second 

derivatives of the function G  evaluated at the 
point pc . By substituting equations (25) and (21) in 
(24), we obtain: 
 

1

( , ( ) ) ( , ( )), 1, ..., 1
z

j p i i j p
i

t H c t G c j zρ υ
=

= − ∇ ∀ = −∑  

(26) 
 

By using the entropic scalar product (14), 
above equations can be written as, 
 

1

, ( , ( )), 1, ..., 1
z

j i i j p
i

t t G c j zρ υ
=

< > = − ∇ ∀ = −∑ (27) 

 
Matrix H  and G∇  are calculated at each 

known node pc . If the node belongs to equilibrium 
point, then the right hand side of the above equation 
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will become zero. The node collection which has 
been subsequently evaluated through (27), will be 
called a Quasi Equilibrium Grid (QEG). 
 

Although there is no restriction for the 
construction of geometric structure of the grid, but 
the best possible condition can be applied by fixing 
the Euclidean norm of shift vector nch‖ ‖ . For further 
details of fixing the Grid spacing, we refer the 
readers to [2]. By fixing the parameters and 
( 1)q − independent vectors im , geometric closure can 
be achieved. In general, it can be written as: 
 

1

, ( , ( )), 1, ..., 1
z

j i i j p
i

t t G c j zρ υ
=

< > = − ∇ ∀ = −∑  

 

1
( , ) 0, 

z

i i
i

m ρ υ
=

=∑     (28) 

 
2 .pc =h ò‖ ‖      

 
By solving the system (28) at each node 

point, we generally obtain two real value solutions 
I
pc and II

pc as shown in Figure [1] b. 
 

Now the q  dimension grid construction is 
split into q subsequent steps. Starting from the 
equilibrium point eqc  the system (28) is solved by 
choosing first slow variable vector 1m  among the q  
available vectors.  In this way, we obtain first SQEM 
trajectory given by QEG nodes Fig. 2: a. 
 

Similarly, by selecting the second 2m  among 
the remaining 1q −  available vectors, we obtain 
some more combinations of nodes Fig. 2 b. The 
procedure can be extendable to q th  step to get all the 
possible combination of vectors. This idea is used to 
construct the higher dimensional manifold and is 
illustrated with example in the next section. 
 
Example at Work 
 

Let us describe four step reversible reaction 
involving six chemical substances, defined 
as:

2 1 2 2 3 4 5 6, , , , ,O A C O A C O A P t A P tO A P tC O A= = = = = =

, Whereas oxygen, carbon monoxide and carbon 
dioxide are gases, and platinum and its oxides are 
surfaces. The conservation law given by (7) is 2 x 6 
matrix, Dc cnt= . 
 

 

 
 

Fig. 1: a) Variation from one grid to next grid point. 
b) Two solutions from one grid towards the 
left and right branch. 

 

 
 

 
 

Fig. 2: a) First 1D QEG construction starting from 
the equilibrium point which then extended to 
both sides. b) 2D QEG construction 
obtained from the 1D invariant grid in the 
node. 
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Fig. 3: Mechanism and graph for the oxidation of 

carbon monoxide over platinum. 
 

1

2

3 1

4 2

5

6

2 1 2 0 1 1
0 0 0 1 1

 
1

c
c
c cnt
c cnt
c
c

 
 
 
    

=    
    

 
 
  

  (29) 

 
Here, cn t  are balances of oxygen and 

platinum i.e.  
 

1 1O oxygencnt b b== = , 
 

2 2.Z platinumcnt b b== =  
 

The Lyapunov function (8) has the form, 
 

6

1
[ ( / ) 1].eq

i i i
i

G c ln c c
=

= −∑   (30) 

 
Thus, the dimension of the phase space is 

six and our aim is to get its reduced description. 
 

The kinetic equations (4) will acquire a form 
 

2 2
1 5 1 1 4

2 6 2 2 4 3 3 4 3 2 5
2

3 2 5 3 3 4 4 5 6 4 3 4
2 2 2

1 5 1 1 4 2 6 2 2 4 3 2 5 3 3 4 4 5 6 4 3 4
2 2 2

1 5 1 1 4 3 2 5 3 3 4 4 5 6 4 3 4

2 6 2 2 4

( )
2 2 2 2

2 2

k c k c c
k c k c c k c c k c c

k c c k c c k c c k c c
J c

k c k c c k c k c c k c c k c c k c c k c c
k c k c c k c c k c c k c c k c c

k c k c c

−

− −

− −

− − − −

− − −

−

−
− + −
− + −

=
− + − + − + −
− + − + − +

− + − 2
4 5 6 4 3 4k c c k c c−

 
 
 
 
 
 
 
 

+  

       (31) 

 
Now, we are using the following set of 

parameters in this case: 
 

1 2 3 41, 1, 1, 1,k k k k+ + + += = = =  
 

1 2 3 4 5 60.1, .025, 0.35, 0.5, 0.9, 0.2eq eq eq eq eq eqc c c c c c= = = = = =  
 

Two left eigenvectors of the Jacobian matrix 

{ | }eq
i

c
j

JL
c
∂

=
∂

 will become, 

 

1 [ 0 .90 75 0 .14 71 0 .1830 0 .114 1 0 .13 05 0 .30 19 ]slx = − − − −  
   
 

2 [0 .0 0 2 3 0 .9 9 6 9 0 .0 3 0 2 0 .0 0 6 7 0 .0 1 2 2 0 .0 7 1 8 ].slx = − − − (3
2) 
 

where, 1
slx and 2

slx  are the first and second slowest 
vectors respectively. The gradient of the Lyapunov 
function G  and its second derivatives matrix H  will 
become: 
 

11 1

22 2

33 3

44 4

55 5

66 6

1 / 0 0 0 0 0ln ln
0 1/ 0 0 0 0ln ln
0 0 1/ 0 0 0ln ln

, .
0 0 0 1/ 0 0ln ln
0 0 0 0 1/ 0ln ln
0 0 0 0 0 1/ln ln

eq

eq

eq

eq

eq

eq

cc c
cc c

cc c
G H

cc c
cc c

cc c

 −  
   −   
   −

∇ = =   
−   

   −
   

−      

(3

3) 
 

The matrix E  (23) will take a form: 
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2.00000 1.00000 2.00000 0.00000 1.00000 1.00000
0.00000 0.00000 0.00000 1.00000 1.00000 1.00000

0.9075 0.1471 0.1830 0.1141 0.1305 0.3019
0.0023 0.9969 0.0302 0.0067 0.0122 0.0718

E

 
 
 =
 − − − −
 − − − 

(3

4) 
 

An orthonormal basis iρ  in the null space of 
the matrix D  has dimension 4z =  and it can be chosen 
as follows: 

 
0.5929 0.2512 0.7587 0.0804 0.0402 0.0402
0.0446 0.6075 0.0636 0.6455 0.3227 0.3227
0.3411 0.4819 0.0570 0.3143 0.6572 0.3428
0.3411 0.4819 0.0570 0.3143 0.3428 0.6572

ρ

− − − − 
 − − − =
 − − − −
 − − − − 

(3

5) 
 

Vector t spanning ( )ker E is: 
 

0.1769 0.0361 0.3918 0.4658 0.7271 0.2613
0.2197 0.0550 0.1129 0.6100 0.1296 0.7396.

− − − − 
 − − − − 

(3

6) 
Now the system (28) will become: 

 
4

1

, ( , ( )) , 1, 2.j i i j p
i

t t G c jρ υ
=

< > = − ∇ ∀ =∑  

 
4

1

( ,  ) 0,  i i
i

m ρ υ
=

=∑     (37) 

 
20.5 0 1 .pc −= ×h‖ ‖     

 
Solving the above system with respect to QEG 

algorithm 3.3 starting from equilibrium point 0
eqc c=  , 

we firstly move towards the right direction 1p pc c+ >   

and then moving towards the left direction 1p pc c+ < . 

We stop calculating the next node 1pc +  when it becomes 
negative and in this way we obtain first SIM 
approximation through SQEG. Here, the system was 
solved by imposing 2 20 .5 1 0 −= ×ò  and 2

slm x= : In this 
way, the grid nodes, denoted by cross, were obtained. 
 

This initial approximation can be further 
modified by applying different methods like MIG, CSP, 
etc to get an accurate SIM approximation. Here, we just 
have obtained the first SIM as shown in (Fig. 4 a) and 
now extending the idea for 2D (Fig. 4b) explained in the 
next section. 

 
 

a) 

 
 
 
 
 
b) 

 
 
Fig. 4: (a) One dimensional Spectral Quasi 

Equilibrium Manifold i.e. 1D SQEM, starting 
from equilibrium. b) Two solutions obtained 
i.e. 2D SQEG extended from the 1D invariant 
grid. The grid spacing, in both the cases 
are 2 20 .5 1 0ε −= × . 

 
Multidimensional Case 
 

In order to construct the two dimensional 
spectral quasi-equilibrium grids, the same method is 
discussed in section 3.3 is applied. Starting from the 
equilibrium point, first SQEG is constructed, dark cross 
line and imposing 2 20 .5 1 0 −= ×ò  and 2

slx=m . Then in 
the next time system, (28) is solved again by starting 
from any grid (cross) imposing 2 20 .5 1 0 −= ×ò and 
using vector 1

slx=m . This time, it gives horizontal dots. 
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By selecting first twenty five points in each case, we 
obtain 2D-Spectral Quasi Equilibrium Manifold as 
shown in Fig. 5. 
 

 
 
Fig. 5: Further extension in 2D SQEG from the 1D 

invariant grids (dark cross line) for first twenty 
points. The grid spacing, in this case 
is 2 20 .5 1 0ε −= × . 

 
Conclusion 
 

The non-linear ODEs of the system lead 
towards the interesting phenomena of mathematical as 
well as chemical point of view. It is difficult to get 
direct solution of such a complex problem. Therefore, 
we stress on reducing the system by getting slow 
invariant manifold. At here we have discussed a 
numerical method which allows an efficient calculation 
of low dimensional manifolds for the simplification of 
complex chemical kinetics. It is based on a multi 
dimensional continuation process and allows us to 
calculate manifolds of arbitrary dimensions. The 
computation method discussed here not only exploits 
the fact of chemical kinetics but also provides the 
information about how Chemistry approaches 
equilibrium and later it approaches its first and second 
dimension. 
 

Initial approximation is obtained through QEM 
and it is further extended to higher dimensions. The 
stability of the system is provided by the Lyapunov 
function which plays an important role in 
thermodynamics. We have presented Quasi Equilibrium 
Manifold approximation by means of a method of 
invariant grid for reducing the system of chemical 
kinetics. Through construction of proper algorithm, this 
idea has been numerically extended for higher 
dimensions and illustrated through an example. 
Avoiding the analytical difficulties of Lagrange 
multipliers method, we have obtained a very good QEM 
approximation through QEGA. 

 
The idea presented here also gives the 

geometrical construction and its reduction in the form of 
slow invariant manifold approximations. By considering 
the other possibilities of the same problem, this idea can 
be further extendable and it is possible to implement it 
to the grid based approximation. 
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